Giraffatitan: Back to Life in Virtual Reality, 360° Video, Museum of Natural History Berlin

Come face to face with a Jurassic giant! Teleport to the Museum für Naturkunde in Berlin to encounter the Jurassic giant Giraffatitan, as it comes back to life before your eyes. Feel its footsteps of one of the tallest dinosaurs that ever lived make the glass in the dinosaur hall shudder. See its muscles, its movement, the texture of its skin, and learn all about how it lived.

The Brachiosaurus (Giraffatitan) is a centerpiece of the exhibitions in Berlin. It stands 13.27 metres tall and is the tallest mounted dinosaur skeleton in the world, as the Guinness Book of Records confirms. The dinosaur lived 150 million years ago and fed on plants.

Its skeleton was found by researchers during the great Tendaguru expedition. The name Brachiosaurus – lizard with arms – refers to its long arms. In 2007, visitors gave it its official nickname, Oskar.

Scientists all over the world are puzzling how much a live Brachiosaurus actually weighed. Some have calculated a mass of 50 tonnes, whereas others think it was just 20 to 30 tonnes. Furthermore, they are interested in the static and physiological problems a dinosaur this size had to overcome.

This is not a replica or a cast. The Museum für Naturkunde displays the original bones of the giant Brachiosaurus. You can almost reach across the 150 million years that separate him from us.

A new scientific name was given to Brachiosaurus in 2009, when differences in the shape, size and proportions of the bones led to the distinction between a North American and an African species. Thus, Brachiosaurus brancai became Giraffatitan brancai. This is now the scientifically recognised name used by researchers.

Museum of Natural History Berlin present you a brief (4 minute) Virtual Reality story about the Brachiosaurus / Giraffatitan, its ecological niche, and the modern giraffe, which occupies a somewhat similar niche.

Giraffatitan

Giraffatitan (name meaning “titanic giraffe”) is a genus of sauropod dinosaur that lived during the late Jurassic Period (Kimmeridgian–Tithonian stages). It was originally named as an African species of Brachiosaurus (B. brancai), but this has since been changed. Giraffatitan was for many decades known as the largest dinosaur but recent discoveries of several larger dinosaurs prove otherwise; giant titanosaurians appear to have surpassed Giraffatitan in terms of sheer mass. Also, the sauropod dinosaur Sauroposeidon is estimated to be taller and possibly heavier than Giraffatitan.

All size estimates for Giraffatitan are based on the specimen HMN SII, a subadult individual between 21.8–22.5 metres (72–74 ft) in length and about 12 meters (39 ft) tall. Mass estimates are varied and range from as little as 15 tonnes (17 short tons) to as much as 78.3 tonnes (86.3 short tons) but there is evidence supporting that these animals could grow larger; specimen HMN XV2, represented by a fibula 13% larger than the corresponding material on HMN SII, might have attained 26 metres (85 ft) in length or longer.

Size
Between 1914 and the 1990s, Giraffatitan was claimed to be the largest dinosaur known, (ignoring the possibly larger but lost Maraapunisaurus) and thus the largest land animal in history. In the later part of the twentieth century, several giant titanosaurians found appear to surpass Giraffatitan in terms of sheer mass. However, Giraffatitan and Brachiosaurus are still the largest brachiosaurid sauropods known from relatively complete material.

All size estimates for Giraffatitan are based on the skeleton mounted in Berlin, which is partly constructed from authentic bones. These were largely taken from specimen HMN SII, a subadult individual between 21.8–22.46 metres (71.5–73.7 ft) in length and about twelve meters (forty feet) tall. The often mentioned length of 22.46 metres is by Werner Janensch, the German scientist who described Giraffatitan, and was the result of a simple adding error: the correct number should have been 22.16 metres. Mass estimates are more problematic and historically have strongly varied from as little as 15 tonnes (17 short tons) to as much as 78 tonnes (86 short tons). These extreme estimates are now considered unlikely due to flawed methodologies. There are also a large number of such estimations as the skeleton proved to be an irresistible subject for researchers wanting to test their new measuring methods. The first calculations were again made by Janensch. In 1935, he gave a volume of thirty-two cubic metres for specimen SII and of twenty-five cubic metres for specimen SI, a smaller individual. It is not known how he arrived at these numbers. In 1950, he mentioned a weight of forty tonnes for the larger skeleton. In 1962, Edwin Harris Colbert measured a volume of 86.953 m³. Presuming a density of 0.9, this resulted in a weight of 78,258 kilogrammes. Colbert had inserted a museum model, sold to the public, into sand and observed the volume displaced by it. Gregory S. Paul in 1988 assumed that the, in his opinion, unrealistically high number had been caused by the fact that such models used to be very bloated compared to the real build of the animal. In 1980, Dale Alan Russell e.a. published a much lower weight of 14.8 tonnes by extrapolating from the diameter of the humerus and the thighbone. In 1985, the same researcher arrived at twenty-nine tonnes by extrapolating from the circumference of these bones. In 1985, Robert McNeill Alexander found a value of 46.6 tonnes inserting a toy model of the British Museum of Natural History into water.

More recent estimates based on models reconstructed from bone volume measurements, which take into account the extensive, weight-reducing airsac systems present in sauropods, and estimated muscle mass, are in the range of 23–40 tonnes (25–44 short tons). In 1988, G.S. Paul measured a volume of 36.585 m³ by inserting a specially constructed model into water. He estimated a weight of 31.5 tonnes, assuming a low density. In 1994/1995, Jan Peczkis calculated a weight of forty tonnes extrapolating from limb bone circumference. In 1995, Hans-Christian Gunga e.a. used a laser scan of the skeleton to build a virtual model from simple geometrical shapes, finding a volume of 74.42 m³ and concluding to a weight of 63 tonnes. In 2008, Gunga revised the volume, using more complex shapes, to 47.9 m³. Donald Henderson in 2004 employed a computer model that calculated a volume of 32.398 m³ and a weight of 25,789 kilogrammes. Newer methods use bone wall thickness.

However, HMN SII is not the largest specimen known (an assertion supported by its subadult status) but HMN XV2, represented by a fibula 13% larger than the corresponding material on HMN SII, which might have attained 26 metres (85 ft) in length.

General build
Giraffatitan was a sauropod, one of a group of four-legged, plant-eating dinosaurs with long necks and tails and relatively small brains. It had a giraffe-like build, with long forelimbs and a very long neck. The skull had a tall arch anterior to the eyes, consisting of the bony nares, a number of other openings, and “spatulate” teeth (resembling chisels). The first toe on its front foot and the first three toes on its hind feet were clawed.

Nostrils
Traditionally, the distinctive high-crested skull was seen as a characteristic of the genus Brachiosaurus, to which Giraffatitan brancai was originally referred; however, it is possible that Brachiosaurus altithorax did not show this feature, since within the traditional Brachiosaurus material it is known only from Tanzanian specimens now assigned to Giraffatitan.

The placement of Giraffatitan nostrils has been the source of much debate with Witmer (2001) describing in Science the hypothesized position of the fleshy nostrils in Giraffatitan in as many as five possible locations. Comparing the nares of dinosaurs with those of modern animals, he found that all species have their external nostril openings in the front, and that sauropods like Giraffatitan did not have nostrils on top of their heads, but near their snouts. There has also been the hypothesis of various sauropods, such as Giraffatitan, possessing a trunk. The fact that there were no narrow-snouted sauropods (Giraffatitan included) tends to discredit such a hypothesis. Stronger evidence for the absence of a trunk is found in the teeth wear of Giraffatitan, which shows the kind of wear that would result from biting and tearing off of plant matter rather than purely grinding, which would be the result of having already ripped the leaves and branches off with its trunk.

Paleobiology
The nostrils of Giraffatitan, like the huge corresponding nasal openings in its skull, were long thought to be located on the top of the head. In past decades, scientists theorized that the animal used its nostrils like a snorkel, spending most of its time submerged in water in order to support its great mass. The current consensus view, however, is that Giraffatitan was a fully terrestrial animal. Studies have demonstrated that water pressure would have prevented the animal from breathing effectively while submerged and that its feet were too narrow for efficient aquatic use. Furthermore, new studies by Lawrence Witmer (2001) show that, while the nasal openings in the skull were placed high above the eyes, the nostrils would still have been close to the tip of the snout (a study which also lends support to the idea that the tall “crests” of brachiosaurs supported some sort of fleshy resonating chamber).

Brain
Giraffatitan’s brain measured about 300 cubic centimetres, which, like those of other sauropods, was small compared to its massive body size. A 2009 study calculated its Encephalization Quotient (a rough estimate of possible intelligence) at a low 0.62 or 0.79, depending on the size estimate used. Like other sauropods, Giraffatitan has a sacral enlargement above the hip which some older sources misleadingly referred to as a “second brain”. However, glycogen bodies are a more likely explanation.

Metabolism
If Giraffatitan was endothermic (warm-blooded), it would have taken an estimated ten years to reach full size, if it were instead poikilothermic (cold-blooded), then it would have required over 100 years to reach full size. As a warm-blooded animal, the daily energy demands of Giraffatitan would have been enormous; it would probably have needed to eat more than ~182 kg (400 lb) of food per day. If Giraffatitan was fully cold-blooded or was a passive bulk endotherm, it would have needed far less food to meet its daily energy needs. Some scientists have proposed that large dinosaurs like Giraffatitan were gigantotherms. Internal organs of these giant sauropods were probably enormous.

Paleoecology
Giraffatitan lived in what is now Tanzania in the Late Jurassic Tendaguru Formation. Since 2012, the boundary between the Kimmeridgian and Tithonian is dated at 152.1 million years ago.

The Tendaguru ecosystem primarily consisted of three types of environment: shallow, lagoon-like marine environments, tidal flats and low coastal environments; and vegetated inland environments. The marine environment existed above the fair weather wave base and behind siliciclastic and ooid barriers. It appeared to have had little change in salinity levels and experienced tides and storms. The coastal environments consisted of brackish coastal lakes, ponds and pools. These environments had little vegetation and were probably visited by herbivorous dinosaurs mostly during droughts. The well vegetated inlands were dominated by conifers. Overall, the Late Jurassic Tendaguru climate was subtropical to tropical with seasonal rains and pronounced dry periods. During the Early Cretaceous, the Tendaguru became more humid. The Tendaguru Beds are similar to the Morrison Formation of North America except in its marine interbeds.

Giraffatitan would have coexisted with fellow sauropods like Dicraeosaurus hansemanni and D. sattleri, Janenschia africana, Tendaguria tanzaniensis and Tornieria africanus; ornithischians like Dysalotosaurus lettowvorbecki and Kentrosaurus aethiopicus; the theropods “Allosaurus” tendagurensis, “Ceratosaurus” roechlingi, “Ceratosaurus” ingens, Elaphrosaurus bambergi, Veterupristisaurus milneri and Ostafrikasaurus crassiserratus; and the pterosaur Tendaguripterus recki. Other organisms that inhabited the Tendaguru included corals, echinoderms, cephalopods, bivalves, gastropods, decapods, sharks, neopterygian fish, crocodilians and small mammals like Brancatherulum tendagurensis.

Natural History Museum, Berlin

The Natural History Museum is a natural history museum located in Berlin, Germany. It exhibits a vast range of specimens from various segments of natural history and in such domain it is one of three major museums in Germany alongside Naturmuseum Senckenberg in Frankfurt and Museum Koenig in Bonn.

The museum houses more than 30 million zoological, paleontological, and mineralogical specimens, including more than ten thousand type specimens. It is famous for two exhibits: the largest mounted dinosaur in the world (a Giraffatitan skeleton), and a well-preserved specimen of the earliest known bird, Archaeopteryx. The museum’s mineral collections date back to the Prussian Academy of Sciences of 1700. Important historic zoological specimens include those recovered by the German deep-sea Valdiva expedition (1898–99), the German Southpolar Expedition (1901–03), and the German Sunda Expedition (1929–31). Expeditions to fossil beds in Tendaguru in former Deutsch Ostafrika (today Tanzania) unearthed rich paleontological treasures. The collections are so extensive that less than 1 in 5000 specimens is exhibited, and they attract researchers from around the world. Additional exhibits include a mineral collection representing 75% of the minerals in the world, a large meteor collection, the largest piece of amber in the world; exhibits of the now-extinct quagga, huia, and tasmanian tiger, and “Bobby” the gorilla, a Berlin Zoo celebrity from the 1920s and 1930s.