The Government of the Philippines has introduced various policies to foster renewable energy. Some of the policies provide an income tax holiday up to seven years, duty-free import of equipment for renewable energy technologies, etc. In 2012, the government launched the new feed-in tariff (FIT).
In 2013, renewable energy provided 26.44 percent of the total energy needs of the Philippines and 19,903 gigawatt-hours (GWh) of electrical energy out of a total demand of 75,266 gigawatt-hours. The Philippines is thus a net importer of fossil fuels. For the sake of energy security, there is momentum to develop renewable energy sources. The types available include hydropower, geothermal power, wind power, solar power and biomass power. Each source has pros and cons. The government of the Philippines has legislated a number of policies in order to increase the use of renewable energy by the country.
The government has committed to raising to 50 percent the contribution of renewables of its total energy generating capacity generating 15.3 gigawatts (GW) by 2030. The move would help the country in its commitment to reduce its carbon emissions by 70 percent by 2030.
Background
There is momentum to decrease reliance on fossil fuels due to the negative effects such as pollution, climate change and financial uncertainty because of fluctuating fuel prices. Legislation passed by the Congress of the Philippines to support the use of renewable energy include the Electric Power Industry Reform Act (2001); the Biofuels Act (2006), which encourages the use of biomass fuels; the Renewable Energy Act (2008); and the Climate Change Act (2009), which provides a legal basis for addressing climate change through sustainable development.
Renewable energy implementation is important to the Philippines for several reasons. The geographic characteristics of the country make it vulnerable to the adverse effects of climate change. Rising sea levels are a threat because the Philippines is an archipelago with many cities located in coastal areas. As the coastline recedes due to rising seas, coastal cities become vulnerable to flooding. Climate change has also been linked to changing weather patterns and extreme weather events.
Reliance on fossil fuels is detrimental to the energy security of the Philippines. The Philippines is a net importer of fossil fuels. In 2012, the Philippines imported 20 million tons of coal. Eight million tons were produced domestically. In 2010, the Philippines imported 54 million barrels of oil and produced 33,000 barrels. Given this dependence on imported coal and oil, the Philippines is vulnerable to price fluctuations and supply constraints.
The Philippine Department of Energy wrote:
“The harnessing and utilization of renewable energy comprises a critical component of the government’s strategy to provide energy supply for the country. This is evident in the power sector where increased generation from geothermal and hydro resources has lessened the country’s dependency on imported and polluting fuels. In the government’s rural electrification efforts, on the other hand, renewable energy sources such as solar, micro-hydro, wind and biomass resources are seeing wide-scale use.”
Sources
The Philippines utilizes renewable energy sources including hydropower, geothermal and solar energy, wind power and biomass resources. In 2013, these sources contributed 19,903 GWh of electrical energy, representing 26.44 percent of the country’s energy needs.
Renewable electricity production (GWh) by source.
Hydropower(GWh) | Geothermal (GWh) | Solar, wind, and biomass (GWh) | Total renewable energy produced (GWh) | Total energy produced (GWh) | Renewable energy as a percentage of total energy production | |
---|---|---|---|---|---|---|
2004 | 8,593 | 10,282 | – | 18,875 | 55,957 | 33.73% |
2005 | 8,387 | 9,902 | 19 | 18,308 | 56,568 | 32.36% |
2006 | 9,939 | 10,465 | 55 | 20,459 | 56,784 | 36.03% |
2007 | 8,563 | 10,215 | 59 | 18,836 | 59,612 | 31.60% |
2008 | 9,834 | 10,723 | 63 | 20,620 | 60,821 | 33.90% |
2009 | 9,834 | 10,324 | 79 | 20,237 | 61,934 | 32.68% |
2010 | 9,788 | 9,929 | 90 | 19,807 | 67,743 | 29.24% |
2011 | 7,803 | 9,942 | 205 | 17,950 | 69,176 | 25.95% |
2012 | 10,252 | 10,250 | 259 | 20,761 | 72,922 | 28.47% |
2013 | 10,019 | 9,605 | 279 | 19,903 | 75,266 | 26.44% |
2014 | 9,137 | 10,308 | 364 | 19,809 | 77,261 | 25.64% |
2015 | 8,665 | 11,044 | 1,254 | 20,963 | 82,413 | 25.44% |
Hydroelectric plants
In the Philippines, there are hydroelectric plants of both the conventional dam and run-of-the-river types. Of twenty-nine hydroelectric plants, fourteen are conventional dam and fifteen are run-of-the-river systems.
Many areas of the Philippines are suitable for hydroelectricity production. However, hydroelectricity production in the Philippines can cause upstream and downstream flooding during monsoonal weather and when excess water is released from dams.
Hydropower output of the Philippines
2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Hydropower Output (GWh) | 8,593 | 8,387 | 9,939 | 8,563 | 9,834 | 9,788 | 7,803 | 9,698 | 10,252 | 10,019 | 9,137 | 8,665 |
Percentage Change | (2.40%) | 18.50% | (13.84%) | 14.84% | (0.47%) | (20.28%) | 24.29% | 5.71% | (2,27%) | (8.80%) | (5.45%) |
Major hydropower sites
Facility Name | Type | Installed Capacity (MW) | Location | Owner | Year Commissioned |
---|---|---|---|---|---|
San Roque | Dam | 411.0 | Pangasinan | San Roque Power Corporation | 2003 |
HEDCOR | Run-of-River | 33.8 | Benguet | HEDCOR | 1993 |
Kalayaan PSPP | Dam | 739.2 | Laguna | CBK Power Company Ltd. | 1998/2004 |
Magat | Run-of-River | 360.0 | Isabela | Aboitiz Power | 1983 |
Caliraya | Dam | 35.0 | Laguna | CBK Power Company Ltd. | 1942/1947/1950 |
Botocan | Run-of-River | 22.8 | Laguna | CBK Power Company Ltd. | 1967/1986 |
Angat | Dam | 246.0 | Bulacan | PSALM | 1967/1986 |
Pantabangan-Masiway | Dam | 132.0 | Nueva Ecija | First Gen Hydro Power Corp. | 1977/1981 |
Ambuklao | Dam | 105.0 | Benguet | Aboitiz Power | 1957 |
Binga | Dam | 132.0 | Benguet | Aboitiz Power | 1960 |
Bakun | Run-of-River | 70.0 | Ilocos Sur | Luzon Hydro Corp. | 2000/2001 |
Casecnan | Dam | 165.0 | Nueva Ecija | CE Casecnan Water & Energy Co. | 2002 |
Sabangan | Run-of-River | 13.2 | Mt. Province | HEDCOR | 2015 |
NIA-Baligtan | Run-of-River | 6.0 | Isabela | NIA | 1987 |
JANOPOL | Run-of-River | 5.2 | Bohol | BOHECO I | 1992 |
AGUS 1 | Dam | 80.0 | Lanao del Sur | PSALM | 1992 |
AGUS 2 | Dam | 180.0 | Lanao del Sur | PSALM | 1992 |
AGUS 4 | Dam | 55.0 | Lanao del Norte | PSALM | 1985 |
AGUS 5 | Dam | 200.0 | Lanao del Norte | PSALM | 1985 |
AGUS 6 | Dam | 54.0 | Lanao del Norte | PSALM | 1953/1971 |
AGUS 7 | Dam | 255.0 | Lanao del Norte | PSALM | 1983 |
Pulangi IV | Run-of-River | 232.0 | Bukidnon | PSALM | 1985/1986 |
Sibulan HEP | Run-of-River | 42.6 | Davao del Sur | HEDCOR | 2010 |
Agusan | Run-of-River | 1.6 | Bukidnon | FG Bukidnon Power Corp. | 1957 |
Bubunawan | Run-of-River | 7.0 | Bukidnon | BPC Inc. | 2001 |
Cabulig HEP | Run-of-River | 9.2 | Misamis Oriental | Mindanao Energy Systems | 2012 |
Talomo HEP | Run-of-River | 4.5 | Davao del Sur | HEDCOR | 1998 |
Tudaya 1 | Run-of-River | 6.6 | Davao del Sur | HEDCOR | 2014 |
Tudaya 2 | Run-of-River | 7.0 | Davao del Sur | HEDCOR | 2014 |
Geothermal power
Geothermal energy is derived from the heat found beneath the earth’s surface. In nations with temperate climates, geothermal energy is used directly, to provide heating for homes. In the Philippines, geothermal energy is used to generate electricity. Two types of technologies are used in the Philippines. These are firstly, the higher temperature flash steam method and secondly, the lower temperature binary cycle method. In the Philippines, the first is the more common. The second is used only at the MAKBAN plant. Geothermal plants are suitable for areas with low winds, such as Mindanao, and areas that have rainy weather, such as Batanes. Geothermal energy production can result in the release of toxic substances such as mercury, hydrogen sulfide, arsenic and selenium. In 2014, at a geothermal plant in Biliran, eight plant workers were hospitalized with hydrogen sulphide poisoning.
Geothermal energy output
2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Geothermal Power Output (GWh) | 10,282 | 9,902 | 10,465 | 10,215 | 10,723 | 10,324 | 9,929 | 9,942 | 10,250 | 9,605 | 10,308 | 11,044 |
Percentage Change | (3.70%) | 5.69% | 2.39% | 4.97% | (3.72%) | (3.83%) | (0.13%) | 3.10% | (6.29%) | 7.32% | 7.14% |
Major geothermal sites
Facility Name | Type | Installed Capacity (MW) | Location | Owner | Year Commissioned |
---|---|---|---|---|---|
MAKBAN | Flash/Binary | 442.8 | Laguna | AP Renewable Inc. | 1979 |
BACMAN | Flash | 130.0 | Sorsogon | Bac-Man Geothermal Inc. | 1993 |
Tiwi | Flash | 234.0 | Albay | AP Renewable Inc. | No date |
MANITO-Lowland | Flash | 1.5 | Albay | Bac-Man Geothermal Inc. | No date |
MAIBARARA | Flash | 20.0 | Batangas | Maibarara Geothermal Inc. | 2014 |
Palinpinon GPP | Flash | 192.5 | Negros Oriental | Green Core Energy | 1983 |
Leyte | Flash | 112.5 | Leyte | Green Core Energy | 1983 |
Unified Leyte | Flash | 610.2 | Leyte | Energy Development Corp. | 1996/1997 |
Nasulo GPP | Flash | 50.0 | Negros Occidental | Energy Development Corp. | 2014 |
Mt. Apo | Flash | 103.0 | North Cotabato | Energy Development Corp. | 1996 |
Solar power
In 2015, three solar farms were constructed in the Philippines. The Philippines receives over 7kWh per square meter per day during its peak month of April and lowest at 3kWH per square meter per day during its off-peak month of December as observed by Schadow1 Expeditions in 33 cities of the country.
Major solar power sites
Facility Name | Type | Installed Capacity (MW) | Location | Owner | Year Commissioned |
---|---|---|---|---|---|
Photovoltaic | 5 | Toledo, Cebu | 2016 | ||
Photovoltaic | 5.02 | Morong, Bataan | 2016 | ||
Majestic | Photovoltaic | 41.3 | Cavite | Majestic Power Corp. | 2015 |
Pampanga Solar | Photovoltaic | 10.0 | Pampanga | Raslag Corp. | 2015 |
Burgos Solar | Photovoltaic | 4.0 | Ilocos Norte | Solar Philippines | 2015 |
CEPALCO Solar PV | Photovoltaic | 1.0 | Cagayan de Oro | CEPALCO | 2004 |
Solar, wind, and biomass energy output
2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Solar, wind, and biomass output (GWh) | 19 | 55 | 59 | 63 | 79 | 90 | 205 | 259 | 279 | 364 | 1,254 |
Percentage change | 189.47% | 7.27% | 6.78% | 25.40% | 13.92% | 127.78% | 26.34% | 7.72% | 30.66% | 244.50% |
Wind power
All wind power sites in the Philippines are on-shore facilities. Some, such as Ilocos Norte, Pililia wind farm in Rizal and Bangui Wind Farm are tourist destinations.
Major wind power sites
Facility Name | Type | Installed Capacity (MW) | Location | Owner | Year Commissioned |
---|---|---|---|---|---|
Bangui Wind Farm Power Phase 1 and 2 | On-Shore | 33.0 | Ilocos Norte | North Wind Power Development Corp. | 2005 |
Bangui Wind Farm Power Phase 3 | On-Shore | 18.9 | Ilocos Norte | North Wind Power Development Corp. | 2014 |
Burgos Wind Farm | On-Shore | 150.0 | Ilocos Norte | EDC | 2014 |
Carispisan Wind | On-Shore | 81.0 | Ilocos Norte | North UPC | 2014 |
Pililla Wind Farm | On-Shore | 54.0 | Rizal | Alternegy Philippine Holdings Corp. | 2015 |
TAREC | On-Shore | 54.0 | Guimaras | TAREC | 2014 |
NABAS Wind Phase 1 | On-Shore | 36.0 | Aklan | PWEI | 2015 |
Biomass power
Biomass energy refers to energy derived from plant and animal sources.Biomass resources are abundant in the Philippines due to its large agricultural industry. Bagasse, rice husks, and coconut husks are used to generate power. The Philippines also uses Biogas from landfill as a biomass energy source. The availability of biomass can be affected by events such as drought. |
Major biomass power sites
Facility Name | Type | Installed Capacity (MW) | Location | Owner | Year Commissioned |
---|---|---|---|---|---|
Green Future | Bagasse | 19.8 | Isabela | Green Future Innovation Inc. | 2014 |
5JC Power | Rice Husk | 12.0 | Nueva Ecija | I Power Corp. | 2015 |
Montalban LFG | Landfill Gas | 9.3 | Rizal | Montalban Methane Power Corp. | 2009 |
Laguna LFG | Landfill Gas | 4.2 | Laguna | Bacavalley Energy Inc. | 2011 |
Lucky PPH | Bagasse | 4.0 | Isabela | Lucky PPH International Inc. | 2008 |
Pangea | Landfill Gas | 1.2 | Metro Manila | Pangea Green Energy Phil Inc. | 2013 |
Legislation
The Philippine government has passed four laws that seek to improve the state of renewable energy. These are the Electric Power Industry Reform Act of 2001 (RA 9136); the Biofuel Act of 2006 (RA 9367); the Renewable Energy Act of 2008 (RA 9513); and the Climate Change Act of 2009 (RA 9729).
The Electric Power Industry Reform Act (2001) (EPIRA) promotes the use of renewable energy particularly through private sector investment. However, after a decade of EPIRA’s enactment, advocacy groups and lawmakers said the law only strengthened monopolies and caused electricity rates to double.
The Biofuels Act (2006) documents state policy to reduce the Philippines’ dependence on imported fossil fuels. It encourages investment in biofuels through incentives including reduced tax on local or imported biofuels; and bank loans for Filipino citizens engaged in biofuel production. The law resulted in the formation of the National Biofuel Board (NBB).
The Renewable Energy Act (2008) legislates state policy to accelerate the development and use of renewable energy resources. Under this act (section 6), mandated a minimum percentage of generation of electricity from renewable sources (a renewable portfolio standard (RPS)). Also under this act (section 7), a feed-In tariff system was implemented for electricity produced from renewable sources, giving producers the security of long term fixed prices. Electricity utilities make net-metering agreements with qualified end-users of renewable energy systems. A minimum percentage of electricity from renewable sources for the off-grid missionary electrification system was also mandated.
Under the Renewable Energy Act (2008) incentives are available to developers of renewable energy. These incentives include an income tax holiday for the first seven years of the entity’s commercial operations; duty-free importation and special realty tax rates on renewable energy machinery, equipment and materials within the first ten years; net operating loss carry-over; zero percent Value-Added Tax (VAT) rate for the sale of fuel or power generated from renewable sources of energy; and Tax Credit on domestic capital equipment and services.
The Climate Change Act (2009) legislated state policy to incorporate a gender-sensitive, pro-children and pro-poor perspective in all climate change and renewable energy efforts.
Feed-in tariff program statistics
FIT Monitoring Board summary
Resource | For Nomination / Conversion | With Certificate of Confirmation of Commerciality | With Certificate of Endorsement to ERC | |||
---|---|---|---|---|---|---|
No. of Projects | Capacity (MW) | No. of Projects | Capacity (MW) | No. of Projects | Capacity (MW) | |
Hydro | – | – | 66 | 610.93 | 4 | 26.60 |
Wind | 7 | 1,023.55 | 5 | 431.00 | 6 | 393.90 |
Solar | 18 | 681.30 | 30 | 892.54 | 6 | 131.90 |
Biomass | – | – | 4 | 24.37 | 11 | 94.25 |
TOTAL | 25 | 1704.85 | 105 | 1,958.84 | 27 | 646.65 |
FiT degression
RE Technology | Proposed FiT ($/kWh)* | Approved FiT ($/kwh)* | Degression Rate |
---|---|---|---|
Solar | 0.407 | 0.220 | 6% after 1 year from effectivity of FiT |
Wind | 0.235 | 0.193 | 0.5% after 2 years from effectivity of FiT |
Biomass | 0.159 | 0.150 | 0.5% after 2 years from effectivity of FiT |
Run-of-River Hydro | 0.139 | 0.134 | 0.5% after 2 years from effectivity of FiT |
*Based on USD 1.00 : PHP 44.00 |
Private sector involvement
The Renewable Energy Act (2008) encourages the involvement of the private sector in renewable energy production through fiscal and non-fiscal incentives.
Fiscal incentives include tax reductions, as well as funding assistance from both government and third parties. A number of international organizations have expressed willingness to aid Philippine businesses in developing local renewable energy infrastructure including German Technical Cooperation (GTZ), United States Agency for International Development (USAID), Asian Development Bank (ADB), United Nations Development Programme (UNDP), and Japan International Cooperation Agency (JICA). Impediments to private sector investment include high transaction costs; social engineering costs; lack of suitable local technology; and caps on electricity prices made by the Energy Regulatory Commission..
An itemized partial list of required permits, licenses and certificates for RE project application:
Required Documents issued by the National Government | Required Documents issued by the Local Government Units |
---|---|
|
|
Renewable energy Technology | Issued FIT rate (per kWh) | Proposed rate (per kWh) |
---|---|---|
Solar | Php 9.68 | Php 17.95 |
Wind | Php 8.53 | Php 10.37 |
Biomass | Php 6.63 | Php 7.00 |
Hydropower | Php 5.90 | Php 6.15 |
Public-private partnership
Up until June 2015, the Department of Energy (DOE) had awarded 646 service contracts as Public-private partnerships to private sector entities under the Renewable Energy Law with installed capacity of 2,760.52 MW.
Resources | Awarded Projects | Installed Capacity | Potential Capacity |
---|---|---|---|
Geothermal | 42 | 1,896.19 | 750.00 |
Hydro | 407 | 136.73 | 7,884.54 |
Wind | 51 | 426.90 | 1,168.00 |
Solar | 93 | 108.90 | 2,206.51 |
Biomass | 45 | 191.80 | 357.00 |
Ocean energy | 8 | – | 31.00 |
TOTAL | 646 | 2,760.52 | 12,397.05 |
Instances of private sector projects include:
Island Group | Resource | Project Name | Project Proponent |
---|---|---|---|
Luzon | Hydropower | Kapangan | Cordillera Hydro Electric Power Corporation |
Bulanao | DPJ Engineers and Consultants | ||
Prismc | PNOC-Renewables Corporation | ||
Magat A | Isabela Electric Cooperative, Inc. | ||
Magat B | Isabela Electric Cooperative, Inc. | ||
Tubao | Tubao Mini-Hydro Electric Corporation | ||
Catuiran* | Sta. Clara Power Corp. | ||
Inabasan* | Ormin Power, Inc. | ||
Solar | San Rafael Solar Power Plant | SPARC Solar Powered AgriRural Communities Corporation | |
Morong Solar Power Plant | SPARC Solar Powered AgriRural Communities Corporation | ||
Cabanatuan Solar Power Project | First Cabanatuan Renewable Ventures, Inc. | ||
Palauig Solar Power Plant | SPARC Solar Powered AgriRural Communities Corporation | ||
Currimao Solar Photovoltaic Power Project | Mirae Asia energy Corporation | ||
Macabud Solar Photovoltaic Power Project | ATN Philippines Solar energy Group, Inc. | ||
Sta. Rita Solar Power Project | Jobin-Sqm Inc. | ||
YH Green | YH Green | ||
Tarlac Solar Power Project | PetroSolar Corporation | ||
Calatagan Solar Power Project Phase I | Solar Philippines Calatagan Corporation | ||
Geothermal | Bacman 3 (Tanawon) Geothermal Project | energy Development Corporation | |
Maibarara 2 Geothermal Project | Maibarara Geothermal Inc. | ||
Biomass | 2 MW ACNPC WTE Biomass Power Plant Project | Asian Carbon Neutral Power Corporation | |
12 MW Biomass Power Plant Project | Green Innovations for Tomorrow Corporation | ||
5 MW Bicol Biomass energy Corporation | Bicol Biomass energy Corporation | ||
8.8 MW Biogas Power Plant Project | AseaGas Corporation | ||
24 MW SJCiPower Rice Husk-Fired Biomass power Plant Project (Phase 1 – 12MW Phase 2 – 12 MW) | San Jose City I Power Corporation | ||
70 kW Biomass Gasification Power Plant Project* | PowerSource Philippines, Inc. | ||
Visayas | Geothermal | Biliran Geothermal Plant Project | Biliran Geothermal Incorporated |
Hydropower | Villasiga HEP | Sunwest Water & Electric Co., Inc. | |
Igbulo (Bais) Hydroelectric Power Project | Century Peak energy Corporation | ||
Cantakoy | Quadriver energy Corp. | ||
Amlan HEPP | Natural Power Sources Integration, Inc. | ||
Solar | Miag-ao Solar Power Project | COSMO Solar energy, Inc. | |
La Carlota Solar Power Project Phase A (SACASOL II-A) | San Carlos Solar energy Inc. | ||
Cadiz Solar Power Project | Phil.Power Exploration & Development Corporation | ||
Wind | Nabas Wind Power Project Phase I – 34 Phase II-16 | PetroWind energy Corporation | |
Biomass | 12 MW Multi-Feedstock Biomass Power Plant Project | Megawatt Clean energy, Inc. | |
2.5 MW Rice Husk-Fired Biomass Power Plant Project | Megawatt Clean energy, Inc. | ||
Mindanao | Hydropower | Lake Mainit | Agusan Power Corporation |
Puyo Hydroelectric Power Project | First Gen Mindanao Hydropower Corp. | ||
Asiga | Asiga Green energy Corp. | ||
Manolo Fortich I | Hedcor Bukidnon, Inc. | ||
Manolo Fortich 2 | Hedcor Bukidnon, Inc. | ||
Solar | Kibawe Solar Power Project | Asiga Green energy Corp. | |
Digos Solar Power Project Phase I | Enfinity Philippines Renewable Resources, Inc. | ||
Digos Solar Power Project Phase II | Enfinity Philippines Renewable Resources, Inc. | ||
Biomass | 3 MW Biomass Cogeneration Facility | Philippine Trade Center, Inc. | |
15 MW LPC Biomass Power Plant Project | Lamsan Power Corporation | ||
3.5 MW Biomass Cogeneration System | Green Earth Enersource Corporation | ||
10MW Malay-balay Bioenergy Corporation Multi Feedstock Generating Facility | Malaybalay Bio-energy Corporation | ||
23.5 MW EPC Woody Biomass Power Plant Project | Eastern Petroleum Corporation | ||
12 MW Napier Grass-Fired Biomass Power Plant Project | Manolo Fortich Biomass energy Corporation |
*—off grid project
Source from Wikipedia