Sustainable energy technology

Sustainable energy is an energy supply that can meet current demand without endangering the energy supply of future generations and without harming the environment. It covers the generation, distribution and use of energy. In energy production, it relies on renewable energies and, among other things, on increasing energy efficiency. The transition from a fossil-nuclear to a sustainable energy supply is called the energy transition.

Definitions
Many definitions have been given to the notion of sustainable energy, among which:

“Concretely, the share of energy able to meet the needs of the present without compromising the ability of future generations to meet their own needs. […] Sustainable energy has two key components: renewable energy and energy efficiency. – Renewable Energy and Energy Efficiency Partnership.

“A dynamic harmony between, on the one hand, the equitable availability of energy-intensive goods and services, and on the other, the preservation of the Earth for future generations. As well as: “The solution will lie in the ability to find sustainable sources of energy and more efficient ways to convert and use energy. – Sustainable energy by JW Tester et al., published by MIT Press.

“Any source of generation and conservation of energy for which the resources are available on a scale large enough to extract a significant part of the energy consumed over the long term, preferably a hundred years. – Invest, a non-profit organization that promotes green technologies.

“The amount of energy that can be naturally regenerated during a human lifetime, and whose extraction does not cause any long-term danger to the environment. – Jamaica Sustainable Development Network.

These definitions show that the concept of sustainable energy differs significantly from other concepts related to renewable energies such as alternative energies or green energies: whether or not a source of energy is sustainable depends on its ability to provide energy. energy for a long time. Sustainable energy can generate a certain level of pollution in the environment, provided that it is low enough not to hinder a massive use of the energy source for an indefinite period of time. The concept of sustainable energy is also different from that of a “low carbon economy”, which is only sustainable in a much more limited sense (that of not adding CO2 of fossil origin in the atmosphere).

A complex problem
As we saw in the introduction, it is not easy to classify a given energy in sustainable energies or not. We must adopt the most comprehensive vision possible, taking into account the entire cycle of production and consumption of energy. It is not enough to consider only primary energy. It is necessary to consider all the materials used for the manufacture of the production units (in particular of electricity…) and for their operation, compared to the lifetime of these.

For example, renewable energies (solar, wind…) require large quantities of metals. In addition, the intermittent nature of solar or wind power generation requires the development of electricity storage techniques. However, the most efficient storage techniques are based on the use of lithium, the reserves of which are limited.

Proponents of nuclear energy point out that near zero emissions of greenhouse gases argue for it. However, resources uranium for nuclear fuel for pressurized water reactors, and zirconium, for the manufacturing of sheaths that surround the fuel for these reactors are limited. Not to mention the ecological footprint of the construction of nuclear power plants and the treatment of waste, nor talk about the risks of a nuclear accident or nuclear proliferation.

Renewable energy technologies
Renewable energy technologies are essential contributors to sustainable energy as they generally contribute to world energy security, reducing dependence on fossil fuel resources, and providing opportunities for mitigating greenhouse gases. The International Energy Agency states that:

Conceptually, one can define three generations of renewables technologies, reaching back more than 100 years.

First-generation technologies emerged from the industrial revolution at the end of the 19th century and include hydropower, biomass combustion and geothermal power and heat. Some of these technologies are still in widespread use.

Second-generation technologies include solar heating and cooling, wind power, modern forms of bioenergy and solar photovoltaics. These are now entering markets as a result of research, development and demonstration (RD&D) investments since the 1980s. The initial investment was prompted by energy security concerns linked to the oil crises (1973 and 1979) of the 1970s but the continuing appeal of these renewables is due, at least in part, to environmental benefits. Many of the technologies reflect significant advancements in materials.

Third-generation technologies are still under development and include advanced biomass gasification, biorefinery technologies, concentrating solar thermal power, hot dry rock geothermal energy and ocean energy. Advances in nanotechnology may also play a major role.

— International Energy Agency, RENEWABLES IN GLOBAL ENERGY SUPPLY, An IEA Fact Sheet

First- and second-generation technologies have entered the markets, and third-generation technologies heavily depend on long term research and development commitments, where the public sector has a role to play.

Various Cost–benefit analysis work by a disparate array of specialists and agencies have been conducted to determine the cheapest and quickest paths to decarbonizing the energy supply of the world. With the topic being one of considerable controversy, particularly on the role of nuclear energy.

First-generation technologies
First-generation technologies are most competitive in locations with abundant resources. Their future use depends on the exploration of the available resource potential, particularly in developing countries, and on overcoming challenges related to the environment and social acceptance.

— International Energy Agency, RENEWABLES IN GLOBAL ENERGY SUPPLY, An IEA Fact Sheet
Among sources of renewable energy, hydroelectric plants have the advantages of being long-lived—many existing plants have operated for more than 100 years. Also, hydroelectric plants are clean and have few emissions. Criticisms directed at large-scale hydroelectric plants include: dislocation of people living where the reservoirs are planned, and release of significant amounts of carbon dioxide during construction and flooding of the reservoir.

However, it has been found that high emissions are associated only with shallow reservoirs in warm (tropical) locales, and recent innovations in hydropower turbine technology are enabling efficient development of low-impact run-of-the-river hydroelectricity projects. Generally speaking, hydroelectric plants produce much lower life-cycle emissions than other types of generation. Hydroelectric power, which underwent extensive development during growth of electrification in the 19th and 20th centuries, is experiencing resurgence of development in the 21st century. The areas of greatest hydroelectric growth are the booming economies of Asia. China is the development leader; however, other Asian nations are installing hydropower at a rapid pace. This growth is driven by much increased energy costs—especially for imported energy—and widespread desires for more domestically produced, clean, renewable, and economical generation.

Geothermal power plants can operate 24 hours per day, providing base-load capacity, and the world potential capacity for geothermal power generation is estimated at 85 GW over the next 30 years. However, geothermal power is accessible only in limited areas of the world, including the United States, Central America, East Africa, Iceland, Indonesia, and the Philippines. The costs of geothermal energy have dropped substantially from the systems built in the 1970s. Geothermal heat generation can be competitive in many countries producing geothermal power, or in other regions where the resource is of a lower temperature. Enhanced geothermal system (EGS) technology does not require natural convective hydrothermal resources, so it can be used in areas that were previously unsuitable for geothermal power, if the resource is very large. EGS is currently under research at the U.S. Department of Energy.

Biomass briquettes are increasingly being used in the developing world as an alternative to charcoal. The technique involves the conversion of almost any plant matter into compressed briquettes that typically have about 70% the calorific value of charcoal. There are relatively few examples of large-scale briquette production. One exception is in North Kivu, in eastern Democratic Republic of Congo, where forest clearance for charcoal production is considered to be the biggest threat to mountain gorilla habitat. The staff of Virunga National Park have successfully trained and equipped over 3500 people to produce biomass briquettes, thereby replacing charcoal produced illegally inside the national park, and creating significant employment for people living in extreme poverty in conflict-affected areas.

In Europe in the 19th century, there were about 200,000 windmills, slightly more than the modern wind turbines of the 21st century. They were mainly used to grind grain and to pump water. The age of coal powered steam engines replaced this early use of wind power.

Second-generation technologies
Markets for second-generation technologies are strong and growing, but only in a few countries. The challenge is to broaden the market base for continued growth worldwide. Strategic deployment in one country not only reduces technology costs for users there, but also for those in other countries, contributing to overall cost reductions and performance improvement.

— International Energy Agency, RENEWABLES IN GLOBAL ENERGY SUPPLY, An IEA Fact Sheet
Solar heating systems are a well known second-generation technology and generally consist of solar thermal collectors, a fluid system to move the heat from the collector to its point of usage, and a reservoir or tank for heat storage and subsequent use. The systems may be used to heat domestic hot water, swimming pool water, or for space heating. The heat can also be used for industrial applications or as an energy input for other uses such as cooling equipment. In many climates, a solar heating system can provide a very high percentage (20 to 80%) of domestic hot water energy. Energy received from the sun by the earth is that of electromagnetic radiation. Light ranges of visible, infrared, ultraviolet, x-rays, and radio waves received by the earth through solar energy. The highest power of radiation comes from visible light. Solar power is complicated due to changes in seasons and from day to night. Cloud cover can also add to complications of solar energy, and not all radiation from the sun reaches earth because it is absorbed and dispersed due to clouds and gases within the earth’s atmospheres.

In the 1980s and early 1990s, most photovoltaic modules provided remote-area power supply, but from around 1995, industry efforts have focused increasingly on developing building integrated photovoltaics and power plants for grid connected applications (see photovoltaic power stations article for details). Currently the largest photovoltaic power plant in North America is the Nellis Solar Power Plant (15 MW). There is a proposal to build a Solar power station in Victoria, Australia, which would be the world’s largest PV power station, at 154 MW. Other large photovoltaic power stations include the Girassol solar power plant (62 MW), and the Waldpolenz Solar Park (40 MW).

Some of the second-generation renewables, such as wind power, have high potential and have already realised relatively low production costs. At the end of 2008, worldwide wind farm capacity was 120,791 megawatts (MW), representing an increase of 28.8 percent during the year, and wind power produced some 1.3% of global electricity consumption. Wind power accounts for approximately 20% of electricity use in Denmark, 9% in Spain, and 7% in Germany. However, it may be difficult to site wind turbines in some areas for aesthetic or environmental reasons, and it may be difficult to integrate wind power into electricity grids in some cases.

Solar thermal power stations have been successfully operating in California commercially since the late 1980s, including the largest solar power plant of any kind, the 350 MW Solar Energy Generating Systems. Nevada Solar One is another 64MW plant which has recently opened. Other parabolic trough power plants being proposed are two 50MW plants in Spain, and a 100MW plant in Israel.

Solar and wind are Intermittent energy sources that supply electricity 10-40% of the time. To compensate for this characteristic, it is common to pair their production with already existing hydroelectricity or natural gas generation. In regions where this isn’t available, wind and solar can be paired with significantly more expensive pumped-storage hydroelectricity.

Brazil has one of the largest renewable energy programs in the world, involving production of ethanol fuel from sugar cane, and ethanol now provides 18 percent of the country’s automotive fuel. As a result of this, together with the exploitation of domestic deep water oil sources, Brazil, which years ago had to import a large share of the petroleum needed for domestic consumption, recently reached complete self-sufficiency in oil.

Most cars on the road today in the U.S. can run on blends of up to 10% ethanol, and motor vehicle manufacturers already produce vehicles designed to run on much higher ethanol blends. Ford, DaimlerChrysler, and GM are among the automobile companies that sell “flexible-fuel” cars, trucks, and minivans that can use gasoline and ethanol blends ranging from pure gasoline up to 85% ethanol (E85). By mid-2006, there were approximately six million E85-compatible vehicles on U.S. roads.

Third-generation technologies
Third-generation technologies are not yet widely demonstrated or commercialised. They are on the horizon and may have potential comparable to other renewable energy technologies, but still depend on attracting sufficient attention and RD&D funding. These newest technologies include advanced biomass gasification, biorefinery technologies, solar thermal power stations, hot dry rock geothermal energy and ocean energy.

— International Energy Agency, RENEWABLES IN GLOBAL ENERGY SUPPLY, An IEA Fact Sheet
Bio-fuels may be defined as “renewable,” yet may not be “sustainable,” due to soil degradation. As of 2012, 40% of American corn production goes toward ethanol. Ethanol takes up a large percentage of “Clean Energy Use” when in fact, it is still debatable whether ethanol should be considered as a “Clean Energy.”

According to the International Energy Agency, new bioenergy (biofuel) technologies being developed today, notably cellulosic ethanol biorefineries, could allow biofuels to play a much bigger role in the future than previously thought. Cellulosic ethanol can be made from plant matter composed primarily of inedible cellulose fibers that form the stems and branches of most plants. Crop residues (such as corn stalks, wheat straw and rice straw), wood waste and municipal solid waste are potential sources of cellulosic biomass. Dedicated energy crops, such as switchgrass, are also promising cellulose sources that can be sustainably produced in many regions of the United States.

In terms of ocean energy, another third-generation technology, Portugal has the world’s first commercial wave farm, the Aguçadora Wave Park, under construction in 2007. The farm will initially use three Pelamis P-750 machines generating 2.25 MW. and costs are put at 8.5 million euro. Subject to successful operation, a further 70 million euro is likely to be invested before 2009 on a further 28 machines to generate 525 MW. Funding for a wave farm in Scotland was announced in February, 2007 by the Scottish Executive, at a cost of over 4 million pounds, as part of a £13 million funding packages for ocean power in Scotland. The farm will be the world’s largest with a capacity of 3 MW generated by four Pelamis machines. (see also Wave farm).

In 2007, the world’s first turbine to create commercial amounts of energy using tidal power was installed in the narrows of Strangford Lough in Ireland. The 1.2 MW underwater tidal electricity generator takes advantage of the fast tidal flow in the lough which can be up to 4m/s. Although the generator is powerful enough to power up to a thousand homes, the turbine has a minimal environmental impact, as it is almost entirely submerged, and the rotors turn slowly enough that they pose no danger to wildlife.

Solar power panels that use nanotechnology, which can create circuits out of individual silicon molecules, may cost half as much as traditional photovoltaic cells, according to executives and investors involved in developing the products. Nanosolar has secured more than $100 million from investors to build a factory for nanotechnology thin-film solar panels. The company’s plant has a planned production capacity of 430 megawatts peak power of solar cells per year. Commercial production started and first panels have been shipped to customers in late 2007.

Large national and regional research projects on artificial photosynthesis are designing nanotechnology-based systems that use solar energy to split water into hydrogen fuel. and a proposal has been made for a Global Artificial Photosynthesis project In 2011, researchers at the Massachusetts Institute of Technology (MIT) developed what they are calling an “Artificial Leaf”, which is capable of splitting water into hydrogen and oxygen directly from solar power when dropped into a glass of water. One side of the “Artificial Leaf” produces bubbles of hydrogen, while the other side produces bubbles of oxygen.

Most current solar power plants are made from an array of similar units where each unit is continuously adjusted, e.g., with some step motors, so that the light converter stays in focus of the sun light. The cost of focusing light on converters such as high-power solar panels, Stirling engine, etc. can be dramatically decreased with a simple and efficient rope mechanics. In this technique many units are connected with a network of ropes so that pulling two or three ropes is sufficient to keep all light converters simultaneously in focus as the direction of the sun changes.

Japan and China have national programs aimed at commercial scale Space-Based Solar Power (SBSP). The China Academy of Space Technology (CAST) won the 2015 International SunSat Design Competition with this video of their Multi-Rotary Joint design. Proponents of SBSP claim that Space-Based Solar Power would be clean, constant, and global, and could scale to meet all planetary energy demand. A recent multi-agency industry proposal (echoing the 2008 Pentagon recommendation) won the SECDEF/SECSTATE/USAID Director D3 (Diplomacy, Development, Defense) Innovation Challenge.

Enabling technologies for renewable energy
Heat pumps and Thermal energy storage are classes of technologies that can enable the utilization of renewable energy sources that would otherwise be inaccessible due to a temperature that is too low for utilization or a time lag between when the energy is available and when it is needed. While enhancing the temperature of available renewable thermal energy, heat pumps have the additional property of leveraging electrical power (or in some cases mechanical or thermal power) by using it to extract additional energy from a low quality source (such as seawater, lake water, the ground, the air, or waste heat from a process).

Thermal storage technologies allow heat or cold to be stored for periods of time ranging from hours or overnight to interseasonal, and can involve storage of sensible energy (i.e. by changing the temperature of a medium) or latent energy (i.e. through phase changes of a medium, such between water and slush or ice). Short-term thermal storages can be used for peak-shaving in district heating or electrical distribution systems. Kinds of renewable or alternative energy sources that can be enabled include natural energy (e.g. collected via solar-thermal collectors, or dry cooling towers used to collect winter’s cold), waste energy (e.g. from HVAC equipment, industrial processes or power plants), or surplus energy (e.g. as seasonally from hydropower projects or intermittently from wind farms). The Drake Landing Solar Community (Alberta, Canada) is illustrative. borehole thermal energy storage allows the community to get 97% of its year-round heat from solar collectors on the garage roofs, which most of the heat collected in summer. Types of storages for sensible energy include insulated tanks, borehole clusters in substrates ranging from gravel to bedrock, deep aquifers, or shallow lined pits that are insulated on top. Some types of storage are capable of storing heat or cold between opposing seasons (particularly if very large), and some storage applications require inclusion of a heat pump. Latent heat is typically stored in ice tanks or what are called phase-change materials (PCMs).

Energy efficiency
Moving towards energy sustainability will require changes not only in the way energy is supplied, but in the way it is used, and reducing the amount of energy required to deliver various goods or services is essential. Opportunities for improvement on the demand side of the energy equation are as rich and diverse as those on the supply side, and often offer significant economic benefits.

Renewable energy and energy efficiency are sometimes said to be the “twin pillars” of sustainable energy policy. Both resources must be developed in order to stabilize and reduce carbon dioxide emissions. Efficiency slows down energy demand growth so that rising clean energy supplies can make deep cuts in fossil fuel use. If energy use grows too fast, renewable energy development will chase a receding target. A recent historical analysis has demonstrated that the rate of energy efficiency improvements has generally been outpaced by the rate of growth in energy demand, which is due to continuing economic and population growth. As a result, despite energy efficiency gains, total energy use and related carbon emissions have continued to increase. Thus, given the thermodynamic and practical limits of energy efficiency improvements, slowing the growth in energy demand is essential. However, unless clean energy supplies come online rapidly, slowing demand growth will only begin to reduce total emissions; reducing the carbon content of energy sources is also needed. Any serious vision of a sustainable energy economy thus requires commitments to both renewables and efficiency.

Renewable energy (and energy efficiency) are no longer niche sectors that are promoted only by governments and environmentalists. The increased levels of investment and the fact that much of the capital is coming from more conventional financial actors suggest that sustainable energy options are now becoming mainstream. An example of this would be The Alliance to Save Energy’s Project with Stahl Consolidated Manufacturing, (Huntsville, Alabama, USA) (StahlCon 7), a patented generator shaft designed to reduce emissions within existing power generating systems, granted publishing rights to the Alliance in 2007.

Climate change concerns coupled with high oil prices and increasing government support are driving increasing rates of investment in the sustainable energy industries, according to a trend analysis from the United Nations Environment Programme. According to UNEP, global investment in sustainable energy in 2007 was higher than previous levels, with $148 billion of new money raised in 2007, an increase of 60% over 2006. Total financial transactions in sustainable energy, including acquisition activity, was $204 billion.

Investment flows in 2007 broadened and diversified, making the overall picture one of greater breadth and depth of sustainable energy use. The mainstream capital markets are “now fully receptive to sustainable energy companies, supported by a surge in funds destined for clean energy investment”.

Smart-grid technology
Smart grid refers to a class of technology people are using to bring utility electricity delivery systems into the 21st century, using computer-based remote control and automation. These systems are made possible by two-way communication technology and computer processing that has been used for decades in other industries. They are beginning to be used on electricity networks, from the power plants and wind farms all the way to the consumers of electricity in homes and businesses. They offer many benefits to utilities and consumers—mostly seen in big improvements in energy efficiency on the electricity grid and in the energy users’ homes and offices.

Clean energy investments
2010 was a record year for green energy investments. According to a report from Bloomberg New Energy Finance, nearly US $243 billion was invested in wind farms, solar power, electric cars, and other alternative technologies worldwide, representing a 30 percent increase from 2009 and nearly five times the money invested in 2004. China had $51.1 billion investment in clean energy projects in 2010, by far the largest figure for any country.

Within emerging economies, Brazil comes second to China in terms of clean energy investments. Supported by strong energy policies, Brazil has one of the world’s highest biomass and small-hydro power capacities and is poised for significant growth in wind energy investment. The cumulative investment potential in Brazil from 2010 to 2020 is projected as $67 billion.

India is another rising clean energy leader. While India ranked the 10th in private clean energy investments among G-20 members in 2009, over the next 10 years it is expected to rise to the third position, with annual clean energy investment under current policies forecast to grow by 369 percent between 2010 and 2020.

It is clear that the center of growth has started to shift to the developing economies and they may lead the world in the new wave of clean energy investments.

Around the world many sub-national governments – regions, states and provinces – have aggressively pursued sustainable energy investments. In the United States, California’s leadership in renewable energy was recognised by The Climate Group when it awarded former Governor Arnold Schwarzenegger its inaugural award for international climate leadership in Copenhagen in 2009. In Australia, the state of South Australia – under the leadership of former Premier Mike Rann – has led the way with wind power comprising 26% of its electricity generation by the end of 2011, edging out coal fired generation for the first time. South Australia also has had the highest take-up per capita of household solar panels in Australia following the Rann Government’s introduction of solar feed-in laws and educative campaign involving the installation of solar photovoltaic installations on the roofs of prominent public buildings, including the parliament, museum, airport and Adelaide Showgrounds pavilion and schools. Rann, Australia’s first climate change minister, passed legislation in 2006 setting targets for renewable energy and emissions cuts, the first legislation in Australia to do so.

Also, in the European Union there is a clear trend of promoting policies encouraging investments and financing for sustainable energy in terms of energy efficiency, innovation in energy exploitation and development of renewable resources, with increased consideration of environmental aspects and sustainability.

Examples:

energy carriers as hydrogen, liquid nitrogen, compressed air, oxyhydrogen, batteries, to power vehicles.
flywheel energy storage, pumped-storage hydroelectricity is more usable in stationary applications (e.g. to power homes and offices). In household power systems, conversion of energy can also be done to reduce smell. For example, organic matter such as cow dung and spoilable organic matter can be converted to biochar. To eliminate emissions, carbon capture and storage is then used.
Usually however, renewable energy is derived from the mains electricity grid. This means that energy storage is mostly not used, as the mains electricity grid is organised to produce the exact amount of energy being consumed at that particular moment. Energy production on the mains electricity grid is always set up as a combination of (large-scale) renewable energy plants, as well as other power plants as fossil-fuel power plants and nuclear power. This combination however, which is essential for this type of energy supply (as e.g. wind turbines, solar power plants etc.) can only produce when the wind blows and the sun shines. This is also one of the main drawbacks of the system as fossil fuel powerplants are polluting and are a main cause of global warming (nuclear power being an exception). Although fossil fuel power plants too can be made emissionless (through carbon capture and storage), as well as renewable (if the plants are converted to e.g. biomass) the best solution is still to phase out the latter power plants over time. Nuclear power plants too can be more or less eliminated from their problem of nuclear waste through the use of nuclear reprocessing and newer plants as fast breeder and nuclear fusion plants.

Renewable energy power plants do provide a steady flow of energy. For example, hydropower plants, ocean thermal plants, osmotic power plants all provide power at a regulated pace, and are thus available power sources at any given moment (even at night, windstill moments etc.). At present however, the number of steady-flow renewable energy plants alone is still too small to meet energy demands at the times of the day when the irregular producing renewable energy plants cannot produce power.

Besides the greening of fossil fuel and nuclear power plants, another option is the distribution and immediate use of power from solely renewable sources. In this set-up energy storage is again not necessary. For example, TREC has proposed to distribute solar power from the Sahara to Europe. Europe can distribute wind and ocean power to the Sahara and other countries. In this way, power is produced at any given time as at any point of the planet as the sun or the wind is up or ocean waves and currents are stirring. This option however is probably not possible in the short-term, as fossil fuel and nuclear power are still the main sources of energy on the mains electricity net and replacing them will not be possible overnight.

Several large-scale energy storage suggestions for the grid have been done. Worldwide there is over 100 GW of Pumped-storage hydroelectricity. This improves efficiency and decreases energy losses but a conversion to an energy storing mains electricity grid is a very costly solution. Some costs could potentially be reduced by making use of energy storage equipment the consumer buys and not the state. An example is batteries in electric cars that would double as an energy buffer for the electricity grid. However besides the cost, setting-up such a system would still be a very complicated and difficult procedure. Also, energy storage apparatus’ as car batteries are also built with materials that pose a threat to the environment (e.g. Lithium). The combined production of batteries for such a large part of the population would still have environmental concerns. Besides car batteries however, other Grid energy storage projects make use of less polluting energy carriers (e.g. compressed air tanks and flywheel energy storage).

Source from Wikipedia